Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO2
نویسندگان
چکیده
The operational constraints for a 6-electron/6-proton CO2 reduction system that operates at the concentration of CO2 in the current atmosphere (pCO2 = 400 ppm) have been evaluated on a variety of scale lengths that span from laboratory scale to global scale. Due to the low concentration of CO2 in the atmosphere, limitations due to mass transport of CO2 from the tropopause have been evaluated through five different regions, each with different characteristic length scales: the troposphere; the atmospheric boundary layer (ABL); the canopy layer; a membrane layer; and an aqueous electrolyte layer. The resulting CO2 conductances, and associated physical transport limitations, will set the ultimate limit on the efficiency and areal requirements of a sustainable solar-driven CO2 reduction system regardless of the activity or selectivity of catalysts for reduction of CO2 at the molecular level. At the electrolyte/electrode interface, the steadystate limiting current density and the concomitant voltage loss associated with the CO2 concentration overpotential in a one-dimensional solar-driven CO2 reduction cell have been assessed quantitatively using a mathematical model that accounts for diffusion, migration and convective transport, as well as for bulk electrochemical reactions in the electrolyte. At pCO2 = 400 ppm, the low diffusion coefficient combined with the low solubility of CO2 in aqueous solutions constrains the steady-state limiting current density to o0.1 mA cm 2 in a typical electrochemical cell with natural convection and employing electrolytes with a range of pH values. Hence, in such a system, the CO2 capture area must be 100to 1000-fold larger than the solar photon collection area to enable a 410% efficient solar-driven CO2 reduction system (based on the solar collection area). This flux limitation is consistent with estimates of oceanic CO2 uptake fluxes that have been developed in conjunction with carbon-cycle analyses for use in coupled atmosphere/ocean general circulation models. Two strategies to improve the feasibility of obtaining efficient and sustainable CO2 transport to a cathode surface at pCO2 = 400 ppm are described and modeled quantitatively. The first strategy employs yet unknown catalysts, analogous to carbonic anhydrases, that dramatically accelerate the chemically enhanced CO2 transport in the aqueous electrolyte layer by enhancing the acid–base reactions in a bicarbonate buffer system. The rapid interconversion from bicarbonate to CO2 in the presence of such catalysts near the cathode surface would in principle yield significant increases in the steady-state limiting current density and allow for 410% solar-fuel operation at the cell level. The second strategy employs a thinlayer cell architecture to improve the diffusive transport of CO2 by use of an ultrathin polymeric membrane electrolyte. Rapid equilibration of CO2 at the gas/electrolyte interface, and significantly enhanced diffusive fluxes of CO2 in electrolytes, are required to increase the steady-state limiting current density of such a system. This latter approach however only is feasible for gaseous products, because liquid products would coat the electrode and therefore thicken the hydrodynamic boundary layer and accordingly reduce the diffusive CO2 flux to the electrode surface. Regardless of whether the limitations due to mass transport to the electrode surface are overcome on the laboratory scale, at global scales the ultimate CO2 flux limitations will be dictated by mass transport considerations related to transport of atmospheric CO2 to the boundary plane of the solar-driven reactor system. The transport of CO2 across the troposphere/ABL interface, the ABL/ canopy layer interface, and the canopy layer/electrolyte interface have therefore been assessed in this work, to provide upper bounds on the ultimate limits for the solar-to-fuel (STF) conversion efficiency for systems that are intended to effect the reduction of atmospheric CO2 in a sustainable fashion at global scale.
منابع مشابه
Loss Reduction in a Probabilistic Approach for Optimal Planning of Renewable Resources
Clean and sustainable renewable energy technology is going to take responsibility of energy supply in electrical power systems. Using renewable sources improve the environment and reduce dependence on oil and other fossil fuels. In distribution power system, utilizing of wind and solar DGs comprises some advantages; consist of loss and emission reduction, and also improvement of voltage profile...
متن کاملPotentials of Solar Energy Use in Upstream Petroleum Industry
Extraction and processing of oil products consume 10% of the total energy produced by fossil resource. to prevent operational problems in downstream units Oil extracted from oil fields will be sent to the desalting plant for desalination and dehydration. One of the most important steps that have a vital role in this unit is pre-heating by heaters which use natural gas produced with crude oil at...
متن کاملOptimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions
Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...
متن کاملOptimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions
Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...
متن کاملA robust and efficient cobalt molecular catalyst for CO2 reduction.
Visible-light driven CO2 reduction is considered to be a sustainable energy source. However, earth-abundant molecular catalysts with high efficiency and robustness towards solar-driven CO2 reduction are limited. Herein, we report a cobalt complex supported by a tetradentate tripodal ligand, which demonstrates catalytic solar-driven CO2 reduction with TON(CO) > 900 over 70 h in the presence of a...
متن کامل